Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.601
Filtrar
1.
Nat Commun ; 15(1): 3270, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627364

RESUMO

Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Heterocromatina/genética , Diferenciação Celular/genética , Metilação de DNA , Epigênese Genética
2.
Science ; 384(6691): 53-59, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574132

RESUMO

Genomic DNA that resides in the nuclei of mammalian neurons can be as old as the organism itself. The life span of nuclear RNAs, which are critical for proper chromatin architecture and transcription regulation, has not been determined in adult tissues. In this work, we identified and characterized nuclear RNAs that do not turn over for at least 2 years in a subset of postnatally born cells in the mouse brain. These long-lived RNAs were stably retained in nuclei in a neural cell type-specific manner and were required for the maintenance of heterochromatin. Thus, the life span of neural cells may depend on both the molecular longevity of DNA for the storage of genetic information and also the extreme stability of RNA for the functional organization of chromatin.


Assuntos
Encéfalo , Cromatina , RNA Nuclear , Animais , Camundongos , Encéfalo/metabolismo , Regulação da Expressão Gênica , Heterocromatina/genética , RNA Nuclear/genética
3.
Proc Natl Acad Sci U S A ; 121(16): e2403316121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593082

RESUMO

Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. However, a broader hypothesis suggests that chromatin compaction can be both a cause and a consequence of the locus histone modification state, with a tight bidirectional interaction underpinning bistable transcriptional states. To rigorously test this hypothesis, we developed a mathematical model for the dynamics of the HMR locus in Saccharomyces cerevisiae, that incorporates activating histone modifications, silencing proteins, and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states (and vice versa), and protein binding/histone modification levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. Such bidirectional feedback between chromatin compaction and the histone modification state may be a widespread and important regulatory mechanism given the hallmarks of many heterochromatic regions: physical chromatin compaction and dimerizing (or multivalent) silencing proteins.


Assuntos
Cromatina , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Cromatina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Código das Histonas , Retroalimentação , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
PLoS Comput Biol ; 20(4): e1012027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598558

RESUMO

Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.


Assuntos
Centrômero , Heterocromatina , Schizosaccharomyces , Heterocromatina/metabolismo , Heterocromatina/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Centrômero/metabolismo , Centrômero/genética , Modelos Genéticos , Biologia Computacional , Inativação Gênica , Sequências Repetitivas de Ácido Nucleico/genética , Humanos , Histonas/metabolismo , Histonas/genética
5.
Clin Transl Med ; 14(3): e1612, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445430

RESUMO

BACKGROUND: Structural rearrangements in highly repetitive heterochromatin regions can result in miscarriage or foetal malformations; however, detecting and preventing the transmission of these rearrangements has been challenging. Recently, the completion of sequencing of the complete human genome (T2T-CHM13) has made it possible to accurately characterise structural rearrangements in these regions. We developed a method based on T2T-CHM13 and nanopore sequencing to detect and block structural rearrangements in highly repetitive heterochromatin sequences. METHODS: T2T-CHM13-based "Mapping Allele with Resolved Carrier Status" was performed for couples who carry structural rearrangements in heterochromatin regions. Using nanopore sequencing and the T2T-CHM13 reference genome, the precise breakpoints of inversions and translocations close to the centromere were detected and haplotypes were constructed using flanking single-nucleotide polymorphisms (SNPs). Haplotype linkage analysis was then performed by comparing consistent parental SNPs with embryonic SNPs to determine whether the embryos carried hereditary inversions or balanced translocations. Based on copy number variation and haplotype linkage analysis, we transplanted normal embryos, which were further verified by an amniotic fluid test. RESULTS: To validate this approach, we used nanopore sequencing of families with inversions and reciprocal translocations close to the centromere. Using the T2T-CHM13 reference genome, we accurately detected inversions and translocations in centromeres, constructed haplotypes and prevented the transmission of structural rearrangements in the offspring. CONCLUSIONS: This study represents the first successful application of T2T-CHM13 in human reproduction and provides a feasible protocol for detecting and preventing the transmission of structural rearrangements of heterochromatin in embryos.


Assuntos
Sequenciamento por Nanoporos , Humanos , Heterocromatina/genética , Variações do Número de Cópias de DNA , Embrião de Mamíferos , Haplótipos/genética
6.
Genes Dev ; 38(3-4): 189-204, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38479839

RESUMO

Chromatin-based epigenetic memory relies on the accurate distribution of parental histone H3-H4 tetramers to newly replicated DNA strands. Mcm2, a subunit of the replicative helicase, and Dpb3/4, subunits of DNA polymerase ε, govern parental histone H3-H4 deposition to the lagging and leading strands, respectively. However, their contribution to epigenetic inheritance remains controversial. Here, using fission yeast heterochromatin inheritance systems that eliminate interference from initiation pathways, we show that a Mcm2 histone binding mutation severely disrupts heterochromatin inheritance, while mutations in Dpb3/4 cause only moderate defects. Surprisingly, simultaneous mutations of Mcm2 and Dpb3/4 stabilize heterochromatin inheritance. eSPAN (enrichment and sequencing of protein-associated nascent DNA) analyses confirmed the conservation of Mcm2 and Dpb3/4 functions in parental histone H3-H4 segregation, with their combined absence showing a more symmetric distribution of parental histone H3-H4 than either single mutation alone. Furthermore, the FACT histone chaperone regulates parental histone transfer to both strands and collaborates with Mcm2 and Dpb3/4 to maintain parental histone H3-H4 density and faithful heterochromatin inheritance. These results underscore the importance of both symmetric distribution of parental histones and their density at daughter strands for epigenetic inheritance and unveil distinctive properties of parental histone chaperones during DNA replication.


Assuntos
Histonas , Schizosaccharomyces , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Heterocromatina/genética , Replicação do DNA/genética , DNA/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Epigênese Genética
7.
Proc Natl Acad Sci U S A ; 121(13): e2317095121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502704

RESUMO

To maintain fertility, male mice re-repress transposable elements (TEs) that were de-silenced in the early gonocytes before their differentiation into spermatogonia. However, the mechanism of TE silencing re-establishment remains unknown. Here, we found that the DNA-binding protein Morc1, in cooperation with the methyltransferase SetDB1, deposits the repressive histone mark H3K9me3 on a large fraction of activated TEs, leading to heterochromatin. Morc1 also triggers DNA methylation, but TEs targeted by Morc1-driven DNA methylation only slightly overlapped with those repressed by Morc1/SetDB1-dependent heterochromatin formation, suggesting that Morc1 silences TEs in two different manners. In contrast, TEs regulated by Morc1 and Miwi2, the nuclear PIWI-family protein, almost overlapped. Miwi2 binds to PIWI-interacting RNAs (piRNAs) that base-pair with TE mRNAs via sequence complementarity, while Morc1 DNA binding is not sequence specific, suggesting that Miwi2 selects its targets, and then, Morc1 acts to repress them with cofactors. A high-ordered mechanism of TE repression in gonocytes has been identified.


Assuntos
Heterocromatina , RNA de Interação com Piwi , Animais , Masculino , Camundongos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Heterocromatina/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
8.
Nature ; 627(8004): 671-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448585

RESUMO

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Proteínas Nucleares , Nucleossomos , Proteômica , Humanos , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteômica/métodos
9.
Nucleus ; 15(1): 2328719, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488152

RESUMO

Heterochromatin is an organizational property of eukaryotic chromosomes, characterized by extensive DNA and histone modifications, that is associated with the silencing of transposable elements and repetitive sequences. Maintaining heterochromatin is crucial for ensuring genomic integrity and stability during the cell cycle. During meiosis, heterochromatin is important for homologous chromosome synapsis, recombination, and segregation, but our understanding of meiotic heterochromatin formation and condensation is limited. In this review, we focus on the dynamics and features of heterochromatin and how it condenses during meiosis in plants. We also discuss how meiotic heterochromatin influences the interaction and recombination of homologous chromosomes during prophase I.


Assuntos
Centrômero , Heterocromatina , Heterocromatina/genética , Meiose/genética , Pareamento Cromossômico
10.
Genes Genet Syst ; 992024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38382924

RESUMO

In Saccharomyces cerevisiae, boundaries formed by DNA sequence-dependent or -independent histone modifications stop the spread of the heterochromatin region formed via the Sir complex. However, it is unclear whether the histone modifiers that control DNA sequence-independent boundaries function in a chromosome-specific or -nonspecific manner. In this study, we evaluated the effects of the SAGA complex, a histone acetyltransferase (HAT) complex, and its relationship with other histone-modifying enzymes to clarify the mechanism underlying boundary regulation of the IMD2 gene on the right subtelomere of chromosome VIII. We found that Spt8, a component of the SAGA complex, is important for boundary formation in this region and that the inclusion of Spt8 in the SAGA complex is more important than its interaction with TATA-binding protein and TFIIS. In addition to SAGA, various HAT-related factors, such as NuA4 and Rtt109, also functioned in this region. In particular, the SAGA complex induced weak IMD2 expression throughout the cell, whereas NuA4 induced strong expression. These results indicate that multiple HATs contribute to the regulation of boundary formation and IMD2 expression on the right subtelomere of chromosome VIII and that IMD2 expression is determined by the balance between these factors.


Assuntos
Proteínas de Saccharomyces cerevisiae , Síndrome de Wiskott-Aldrich , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Genome ; 67(4): 109-118, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316150

RESUMO

Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , DNA Satélite/genética , Heterocromatina/genética , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais/genética , Cariótipo , Aves/genética , Evolução Molecular
12.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376465

RESUMO

DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , DNA Metiltransferase 3A , Epigenômica , Humanos , Divisão Celular , Heterocromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA Metiltransferase 3A/genética , Linhagem Celular
13.
Genes Dev ; 38(3-4): 115-130, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383062

RESUMO

H3K9 trimethylation (H3K9me3) plays emerging roles in gene regulation, beyond its accumulation on pericentric constitutive heterochromatin. It remains a mystery why and how H3K9me3 undergoes dynamic regulation in male meiosis. Here, we identify a novel, critical regulator of H3K9 methylation and spermatogenic heterochromatin organization: the germline-specific protein ATF7IP2 (MCAF2). We show that in male meiosis, ATF7IP2 amasses on autosomal and X-pericentric heterochromatin, spreads through the entirety of the sex chromosomes, and accumulates on thousands of autosomal promoters and retrotransposon loci. On the sex chromosomes, which undergo meiotic sex chromosome inactivation (MSCI), the DNA damage response pathway recruits ATF7IP2 to X-pericentric heterochromatin, where it facilitates the recruitment of SETDB1, a histone methyltransferase that catalyzes H3K9me3. In the absence of ATF7IP2, male germ cells are arrested in meiotic prophase I. Analyses of ATF7IP2-deficient meiosis reveal the protein's essential roles in the maintenance of MSCI, suppression of retrotransposons, and global up-regulation of autosomal genes. We propose that ATF7IP2 is a downstream effector of the DDR pathway in meiosis that coordinates the organization of heterochromatin and gene regulation through the spatial regulation of SETDB1-mediated H3K9me3 deposition.


Assuntos
Heterocromatina , Histonas , Células Germinativas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Meiose/genética , Metilação , Masculino
14.
Cancer Res ; 84(6): 808-826, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38345497

RESUMO

Heterochromatin loss and genetic instability enhance cancer progression by favoring clonal diversity, yet uncontrolled replicative stress leads to mitotic catastrophe and inflammatory responses that promote immune rejection. KRAB domain-containing zinc finger proteins (KZFP) contribute to heterochromatin maintenance at transposable elements (TE). Here, we identified an association of upregulation of a cluster of primate-specific KZFPs with poor prognosis, increased copy-number alterations, and changes in the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL). Depleting two of these KZFPs targeting evolutionarily recent TEs, ZNF587 and ZNF417, impaired the proliferation of cells derived from DLBCL and several other tumor types. ZNF587 and ZNF417 depletion led to heterochromatin redistribution, replicative stress, and cGAS-STING-mediated induction of an interferon/inflammatory response, which enhanced susceptibility to macrophage-mediated phagocytosis and increased surface expression of HLA-I, together with presentation of a neoimmunopeptidome. Thus, cancer cells can exploit KZFPs to dampen TE-originating surveillance mechanisms, which likely facilitates clonal expansion, diversification, and immune evasion. SIGNIFICANCE: Upregulation of a cluster of primate-specific KRAB zinc finger proteins in cancer cells prevents replicative stress and inflammation by regulating heterochromatin maintenance, which could facilitate the development of improved biomarkers and treatments.


Assuntos
Heterocromatina , Neoplasias , Animais , Heterocromatina/genética , Dedos de Zinco/genética , Elementos de DNA Transponíveis , Primatas/genética , Inflamação/genética , Neoplasias/genética
15.
Exp Mol Med ; 56(2): 422-440, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374207

RESUMO

Accumulating evidence hints heterochromatin anchoring to the inner nuclear membrane as an upstream regulatory process of gene expression. Given that the formation of neural progenitor cell lineages and the subsequent maintenance of postmitotic neuronal cell identity critically rely on transcriptional regulation, it seems possible that the development of neuronal cells is influenced by cell type-specific and/or context-dependent programmed regulation of heterochromatin anchoring. Here, we explored this possibility by genetically disrupting the evolutionarily conserved barrier-to-autointegration factor (Baf) in the Drosophila nervous system. Through single-cell RNA sequencing, we demonstrated that Baf knockdown induces prominent transcriptomic changes, particularly in type I neuroblasts. Among the differentially expressed genes, our genetic analyses identified teashirt (tsh), a transcription factor that interacts with beta-catenin, to be closely associated with Baf knockdown-induced phenotypes that were suppressed by the overexpression of tsh or beta-catenin. We also found that Baf and tsh colocalized in a region adjacent to heterochromatin in type I NBs. Notably, the subnuclear localization pattern remained unchanged when one of these two proteins was knocked down, indicating that both proteins contribute to the anchoring of heterochromatin to the inner nuclear membrane. Overall, this study reveals that the Baf-mediated transcriptional regulation of teashirt is a novel molecular mechanism that regulates the development of neural progenitor cell lineages.


Assuntos
Células-Tronco Neurais , beta Catenina , Animais , Drosophila , Regulação da Expressão Gênica , Heterocromatina/genética , Tireotropina
16.
Mol Cell ; 84(3): 413-414, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307002

RESUMO

In a recent study in Cell, Malachowski et al.1 show that the trinucleotide expansion in the FMR1 gene underlying fragile X syndrome triggers formation of large heterochromatin domains across the genome, resulting in the repression of synaptic genes housed within these domains.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos/genética , Heterocromatina/genética , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Regiões Promotoras Genéticas , Repetições de Trinucleotídeos/genética
17.
Genes Cells ; 29(3): 217-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38229233

RESUMO

In eukaryotes, single cells in a population display different transcriptional profiles. One of the factors regulating this heterogeneity is the chromatin state in each cell. However, the mechanisms of epigenetic chromatin regulation of specific chromosomal regions remain unclear. Therefore, we used single-cell tracking system to analyze IMD2. IMD2 is located at the subtelomeric region of budding yeast, and its expression is epigenetically regulated by heterochromatin fluctuations. Treatment with mycophenolic acid, an inhibitor of de novo GTP biosynthesis, triggered a decrease in GTP, which caused heterochromatin fluctuations at the IMD2 locus. Interestingly, within individually tracked cells, IMD2 expression state underwent repeated switches even though IMD2 is positioned within the heterochromatin region. We also found that 30% of the cells in a population always expressed IMD2. Furthermore, the addition of nicotinamide, a histone deacetylase inhibitor, or guanine, the GTP biosynthesis factor in salvage pathway of GTP biosynthesis, regulated heterogeneity, resulting in IMD2 expression being uniformly induced or suppressed in the population. These results suggest that gene expression heterogeneity in the IMD2 region is regulated by changes in chromatin structure triggered by slight decreases in GTP.


Assuntos
Proteínas de Saccharomyces cerevisiae , Síndrome de Wiskott-Aldrich , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Guanosina Trifosfato/metabolismo , Regulação Fúngica da Expressão Gênica
18.
Elife ; 132024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289024

RESUMO

Eukaryotic cells are constantly exposed to various environmental stimuli. It remains largely unexplored how environmental cues bring about epigenetic fluctuations and affect heterochromatin stability. In the fission yeast Schizosaccharomyces pombe, heterochromatic silencing is quite stable at pericentromeres but unstable at the mating-type (mat) locus under chronic heat stress, although both loci are within the major constitutive heterochromatin regions. Here, we found that the compromised gene silencing at the mat locus at elevated temperature is linked to the phosphorylation status of Atf1, a member of the ATF/CREB superfamily. Constitutive activation of mitogen-activated protein kinase (MAPK) signaling disrupts epigenetic maintenance of heterochromatin at the mat locus even under normal temperature. Mechanistically, phosphorylation of Atf1 impairs its interaction with heterochromatin protein Swi6HP1, resulting in lower site-specific Swi6HP1 enrichment. Expression of non-phosphorylatable Atf1, tethering Swi6HP1 to the mat3M-flanking site or absence of the anti-silencing factor Epe1 can largely or partially rescue heat stress-induced defective heterochromatic maintenance at the mat locus.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Inativação Gênica
19.
Proc Natl Acad Sci U S A ; 121(6): e2315596121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285941

RESUMO

Heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), spreads across large domains and can be epigenetically inherited in a self-propagating manner. Heterochromatin propagation depends upon a read-write mechanism, where the Clr4/Suv39h methyltransferase binds to preexisting trimethylated H3K9 (H3K9me3) and further deposits H3K9me. How the parental methylated histone template is preserved during DNA replication is not well understood. Here, we demonstrate using Schizosaccharomyces pombe that heterochromatic regions are specialized replication domains demarcated by their surrounding boundary elements. DNA replication throughout these domains is distinguished by an abundance of replisome components and is coordinated by Swi6/HP1. Although mutations in the replicative helicase subunit Mcm2 that affect histone binding impede the maintenance of a heterochromatin domain at an artificially targeted ectopic site, they have only a modest impact on heterochromatin propagation via the read-write mechanism at an endogenous site. Instead, our findings suggest a crucial role for the replication factor Mcl1 in retaining parental histones and promoting heterochromatin propagation via a mechanism involving the histone chaperone FACT. Engagement of FACT with heterochromatin requires boundary elements, which position the heterochromatic domain at the nuclear peripheral subdomain enriched for heterochromatin factors. Our findings highlight the importance of replisome components and boundary elements in creating a specialized environment for the retention of parental methylated histones, which facilitates epigenetic inheritance of heterochromatin.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Histonas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Montagem e Desmontagem da Cromatina , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Epigênese Genética
20.
Proc Natl Acad Sci U S A ; 121(3): e2318455121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38198529

RESUMO

Mechanisms enabling genetically identical cells to differentially regulate gene expression are complex and central to organismal development and evolution. While gene silencing pathways involving DNA sequence-specific recruitment of histone-modifying enzymes are prevalent in nature, examples of sequence-independent heritable gene silencing are scarce. Studies of the fission yeast Schizosaccharomyces pombe indicate that sequence-independent propagation of heterochromatin can occur but requires numerous multisubunit protein complexes and their diverse activities. Such complexity has so far precluded a coherent articulation of the minimal requirements for heritable gene silencing by conventional in vitro reconstitution approaches. Here, we take an unconventional approach to defining these requirements by engineering sequence-independent silent chromatin inheritance in budding yeast Saccharomyces cerevisiae cells. The mechanism conferring memory upon these cells is remarkably simple and requires only two proteins, one that recognizes histone H3 lysine 9 methylation (H3K9me) and catalyzes the deacetylation of histone H4 lysine 16 (H4K16), and another that recognizes deacetylated H4K16 and catalyzes H3K9me. Together, these bilingual "read-write" proteins form an interdependent positive feedback loop that is sufficient for the transmission of DNA sequence-independent silent information over multiple generations.


Assuntos
Cromatina , Lisina , Cromatina/genética , Histonas/genética , Heterocromatina/genética , Inativação Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...